NonResponse in Household Expenditure Surveys

by

Thomas Laitila
Statistics Sweden and Örebro University
Presentation at NSM 2022, Reykjavik, August 23

The NonResponse Problem

- Very problematic case
- $\operatorname{Pr}($ Responding $)=f($ study variable, auxiliary variables)
- Data on study variable missing for nonrespondents
- Problematic case
- $\operatorname{Pr}($ Responding $)=f($ auxiliary variables)
- Finding the "correct" auxiliary variables ?

NSM 2022

Prospective Studies

- Retrospective studies
- Respondents are to respond on past events
- Participation may be decided on the past events to be reported
- The very problematic case
- Prospective studies
- Respondents are to report future events
- Decision to participate cannot be based on events not yet realized
- The problematic case ; !!

NSM 2022

Traditional HES

- Repondents are recruited
- Those accepting keeps a diary of purcheses for some coming weeks
- HES are prospective
- Adjustment for participation decliners can be made using variables explaining the choice
- Variables explaining choice to participate = ?

NSM 2022

Variables explaining choice (accept/decline participation)

- They are not known
- A choice made is a behavioural action
- Behavioral theory explains choices made by people
- A respondent accepts participation if Utility (Accept) > Utility (Decline)
- Use choice theory in finding appropriate variables for adjustment of HES data

NSM 2020

Economic Choice Theory

- Economic utility function: U=u(C,L,R)
- $C=$ Consumption, $L=$ Leisure time, $R=$ Response indicator (1/0)
- If choice is responding $(R=1)$
- Time required for responding, t, is drawn from total available time, T , leaving less time to allocate between Work and Leisure
- Optimize U with $R=1$, available time $=T$-t gives U_{1}
- Optimize U with $R=0$, available time $=T$ gives U_{0}
- Choose to respond $(R=1)$ if $\quad U_{1}>U_{0}$

Dichotomous-Choice (DC) model

- From the theory a DC model is derived for single living households where
$\operatorname{Pr}($ Accept from hh $k)=f\left(a_{k}+b_{k} \cdot z_{k}\right)$
where
$z_{k}=$ a derived measure of cost of responding
$a_{k}=$ utility obtained from responding, excl. costs
$b_{k}=$ valuation of the cost

Table A: Probit ML estimates of DC model for Pr (Response)	Variables	Estimate	St.Err
	Age	. 142	. 027
	Log(Disposable Income)	. 284	. 102
	Log(Age)	-6.17	1.35
	D_{k}	95.8	40.5
Data from Statistics Sweden 2007 HES. Single living with or without children.	D_{k} Age	-. 713	. 205
	D_{k} Log(Disposable Income)	-. 202	. 106
	$\mathrm{D}_{\mathrm{k}} \log (\mathrm{Age})$	-65.6	25.9
	D_{k} Log(Disposable Income) 2	13.0	4.64
	z_{k}	108	56.2
	$\mathbf{z}_{\mathrm{k}} \log$ (N:o persons)	-10.8	2.77
NSM 2020	$z_{k} \log ($ Age $)$	-29.3	14.8

Figure A: Plot of estimated response probabilities vs Age

Table B:		Single with children		Single without children	
	Expenditures	$\begin{gathered} \text { DC } \\ \text { model } \end{gathered}$	$\begin{aligned} & \text { HUT } \\ & 2007 \end{aligned}$	$\begin{gathered} \mathrm{DC} \\ \text { model } \end{gathered}$	$\begin{aligned} & \text { HUT } \\ & 2007 \end{aligned}$
	Total	234535	$\begin{aligned} & 229290 \\ & \pm 17100 \end{aligned}$	168595	$\begin{array}{r} 167540 \\ \pm 9910 \end{array}$
	Food	29232	$\begin{array}{r} 28310 \\ \pm 2360 \end{array}$	16508	$\begin{array}{r} 17280 \\ \pm 1080 \end{array}$
	Clothes/shoes	11899	$\begin{array}{r} 11590 \\ \pm 2640 \end{array}$	9172	$\begin{array}{r} 8230 \\ \pm 1670 \end{array}$
	Healthcare	4140	$\begin{gathered} 4060 \\ \pm 1190 \end{gathered}$	4282	$\begin{array}{r} 4020 \\ \pm 1270 \end{array}$

NSM 2022

Benefits of the DC approach

- Estimates rest on sound scientific and theoretical arguments

There is nothing

so practical as a good theory

Kurt Lewin
PICTUREQUOTES.com

- Theory provides with guidance on auxiliary variables to include

Design of HES

- Drastically reduce the response burden
- "Split questionnaires" with overlaps
- Shorter measurement periods
- Simplify what to record in diary
- etc.
- Revise sampling design
- Make face-to-face-interviews feasible
- Kluster sampling
- Geographical areas with low response rates

NSM 2022

Design of HES cont'd

- Use DC approach to handle nonresponse in the recruiting stage
- Handle nonresponse due to drop-outs/attrition with
- double sampling
- DC modelling
- Make participation interesting
- Payments
- Information feedback

NSM 2020

Also in the paper

- Example where errouneous auxiliary variables are introducing bias in estimates
- Range of observations perhaps more important than response rates (to be added)

NSM 2020

Thanks for listening

Contact - thomas.laitila@scb.se

NSM 2022

