NonResponse in Household Expenditure Surveys

by Thomas Laitila Statistics Sweden and Örebro University

Presentation at NSM 2022, Reykjavik, August 23

The NonResponse Problem

- Very problematic case
 - Pr(Responding)=f(**study variable**, auxiliary variables)
 - Data on study variable missing for nonrespondents
- Problematic case
 - Pr(Responding)=f(auxiliary variables)
 - Finding the "correct" auxiliary variables ?

Prospective Studies

Retrospective studies

- Respondents are to respond on past events
- Participation may be decided on the past events to be reported
- The very problematic case
- Prospective studies
 - Respondents are to report future events
 - Decision to participate cannot be based on events not yet realized
 - The problematic case 😳 !!

Traditional HES

- Repondents are recruited
 - Those accepting keeps a diary of purcheses for some coming weeks
- HES are prospective
- Adjustment for participation decliners can be made using variables explaining the choice
- Variables explaining choice to participate =?

Variables explaining choice (accept/decline participation)

- They are not known
- A choice made is a behavioural action
- Behavioral theory explains choices made by people
 - A respondent accepts participation if Utility(Accept) > Utility(Decline)
- Use choice theory in finding appropriate variables for adjustment of HES data

Economic Choice Theory

- Economic utility function: U=u(C,L,R)
 - C = Consumption, L = Leisure time, R = Response indicator (1/0)
- If choice is responding (R=1)
 - Time required for responding, t, is drawn from total available time, T, leaving less time to allocate between Work and Leisure
- Optimize U with R=1, available time = T-t gives U_1
- Optimize U with R=0, available time = T gives U_0
- Choose to respond (R=1) if $U_1 > U_0$

NSM 2022

Dichotomous-Choice (DC) model

 From the theory a DC model is derived for single living households where

Pr(Accept from hh k)= $f(a_k + b_k \cdot z_k)$

where

 $z_k =$ a derived measure of cost of responding $a_k =$ utility obtained from responding, excl. costs $b_k =$ valuation of the cost

Table A: Probit ML estimates of DC model for Pr(Response)

Data from Statistics Sweden 2007 HES. Single living with or without children.

	Variables	Estimate	St.Err
e A: bit ML estimates of model for Response)	Age	.142	.027
	Log(Disposable Income)	.284	.102
	Log(Age)	-6.17	1.35
	D _k	95.8	40.5
a from Statistics eden 2007 HES. gle living with or out children.	D _k Age	713	.205
	D _k Log(Disposable Income)	202	.106
	D _k Log(Age)	-65.6	25.9
	D _k Log(Disposable Income) ²	13.0	4.64
	Z _k	108	56.2
	z _k Log(N:o persons)	-10.8	2.77
NSM 2022	z _k Log(Age)	-29.3	14.8

Figure A: Plot of estimated response probabilities vs Age

Age

	Single with children		Single without children	
Expenditures	DC model	HUT 2007	DC model	HUT 2007
Total	234 535	229 290 ±17 100	168 595	167 540 ±9 910
Food	29 232	28 310 ±2 360	16 508	17 280 ±1 080
Clothes/shoes	11 899	11 590 ±2 640	9 172	8 230 ±1 670
Healthcare	4 140	4 060 ±1 190	4 282	4 020 ±1 270

Benefits of the DC approach

- Estimates rest on sound scientific and theoretical arguments
- Theory provides with guidance on auxiliary variables to include

Kurt Lewin

PICTUREQUOTES. com

Design of HES

- Drastically reduce the response burden
 - "Split questionnaires" with overlaps
 - Shorter measurement periods
 - Simplify what to record in diary
 - etc.
- Revise sampling design
 - Make face-to-face-interviews feasible
 - Kluster sampling
 - Geographical areas with low response rates

Design of HES cont'd

• Use DC approach to handle nonresponse in the recruiting stage

- Handle nonresponse due to drop-outs/attrition with
 - double sampling
 - DC modelling
- Make participation interesting
 - Payments
 - Information feedback

Also in the paper

- Example where errouneous auxiliary variables are introducing bias in estimates
- Range of observations perhaps more important than response rates (to be added)

Thanks for listening

Contact – thomas.laitila@scb.se

